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Abstract. A boundary-element alternating method, denoted herein as BEAM,

is presented for two-dimensional fracture problems. This is an iterative method

which alternates between two solutions. An analytical solution for arbitrary poly-

nomial normal and tangential pressure distributions applied to the crack faces of

an embedded crack in an infinite plate is used as the fundamental solution in the

alternating method. A boundary-element method for an uncracked finite plate

is the second solution. For problems of edge cracks a technique of utilizing "fi-

nite elements" with BEAM is presented to overcome the inherent singularity in

boundary element stress calculation near the boundaries. Several computational

aspects that make the algorithm efficient are presented. Finally the BEAM is ap-

plied to a variety of two-dimensional crack problems with different configurations

and loadings to assess the validity of the method. The method gives accurate

stress-intensity factors with minimal computing effort.

1 Introduction

Stress-intensity factors are fundamental fracture parameters that are needed to

design structures against fatigue and fracture failures. In two-dimensional analysis,

several methods are available in the literature to calculate the stress-intensity

factors of cracked bodies. Several stress-intensity factor compendia [1-4] are also

available. Recent research [5-13] revealed the potential of the alternating method

to obtain stress-intensity factors in cracked bodies for which solutions are not now

readily available. The alternating method developed and employed here is based

on an earlier method known as the the Shwartz-Neumann alternating method

[5]. The alternating method is an iterative numerical technique that alternates

between two solutions to satisfy the required boundary conditions of the problem.

One solution is a fundamental and is usually a continuum solution for a cracked

infinite plate or solid. The second solution is provided by a numerical analysis

such as finite-elements or boundary-elements of the uncracked body subjected to



the sameloading conditions. The method alternates between these two solutions
to satisfy the required boundary conditionsofthe original problem_ -_ .....

The literature contains several papers on the alternating method which use

the finite element method to obtain the second solution [6-12]. Recently the bound-

ary element method was used in the alternating method instead of finite-element

method [13]. The boundary element method (BEM) is attractive because with this

method only the boundaries of the problem need to be modeled and hence, the

modeling effort is considerably reduced. The purpose of this paper is to present

suction boUndary-'eiement-_t.ernat_ngmet_laod (_E_i_wo_mensional _xeff

mode crack problems. The method is thoroughly discussed and several attractive

computational features of this method are highlighted. A procedure to combine

"finite elements" with BEAM to overcome inherent singularities in stress calcula-

tion with BEM is discussed. First, the basic analytical solutions for a crack in an

infinite plate subjected to arbitrary normal and tangential pressure distributions

over the crack faces are summarized. Second, a brief summary of the boundary-

element method is presented to facilitate the presentation of the BEAM. Next,

various computational aspects involved in the BEAM are discussed_ Finally, sev-

eral numerical examples are presented to illustrate the versatility of this method

to obtain accurate mixed-mode stress-intensity factors for several cracked config-

urations.

2 Analytical solutions

Use of the alternating method requires analytical solutions for an embedded crack

in an infinite plate subjected to tractions on the crack faces. Consider then an

infinite plate with a crack of length 2a as shown in Fig. 1. It is assumed that

the tractions on the crack faces can be represented using an arbitrary polyno-

mial pressure distribution, py, applied normal to the crack faces and an arbitrary

polynomial pressure distribution, p_, applied tangential to the crack faces. The

normal, (p_), and tangential, (p_), pressure distributions applied over the crack

faces take the polynomial form,



Figure 1. Crack in an Infinite plate subjected to normal

and tangential forces

N

P' = Z A,_(x/a)"
n=O

N

=Z

(I)

n=O

where N is the maximum degree of the polynomial functions and A,_ and B,_ are

arbitrary constants. To obtain the stresses everywhere in the infinite plate due

to the above arbitrary pressure distributions, the analytical solutions for a typical

polynomial term (z/a)" in Eq. (1) is obtained. The Westergaard stress function

for any integer power n can be written as [10,11]

-(z/a)- + %<;)¢(_) -- -(z/a)" + %<=)

for odd n

for even n

(2)



where z is a complex variable, z = z + i v and i = v/-L] -

The functions G_(z) and G_(z) are given in reference 10 as

m+l --a 2 k 1

a_(z) = z2m+__ c_(-71
k=O

for odd values of n with n = 2m + 1

G_(z) z2m+2_ -a 2 k 1= Ck(-7)
k=0

(3)

(4)

and for even values of n with n = 2m. In Eqs. (3) and (4) the constants Ck are

:=

1 for k=0Ck = 1 1
(_)(_ - 1)(½ - 2)...(½ - k + 1) for k = 1,2,3...

(5)

The stress function of Eq. (2) is valid for both normal and tangential distributions

of Eq. (1).

The stresses at any general location z in the plate due to normal, p_, pressure

distribution on the crack faces are [1]

(_)_, = _(¢)- y._(¢')

(_)_, = _(¢) + y-_(¢')

(_)_, = -y _(¢')

(6)

Similarly, the stress at any location z in the plate due to tangential, p_, pressure

distribution, on the crack faces are

z



(_z)pz= 23(¢) + y _(¢')

(_z_)p°= _(¢) - y_(¢')

(7)

In equations (6) and (7), _() and ._( ) denote the real and imaginary parts,

respectively, of the function in the parenthesis and

¢, de= d--7 (S)

=_

The stress-intensity factor weights, (k,_),_, for mode I and mode II for a typical

term (x/a) r_ in Eq. (1) can be obtained from the stress function as

(9a)

for the crack tip at z = a and

kw = v_-;zlim {(-i)v_+a¢(z)} (9b)

for crack tip at z = -a.

The stress-intensity factors for each of the polynomial terms (z/a) '_

computed and are presented in Table 1.

were

3 The boundary element method

In this section, the boundary-element method (BEM) is briefly outlined to facil-

itate the presentation of the BEAM. In the absence of body forces the integral

representation of the displacement at any internal point 'j' for a two-dimensional

domain can be written as [14]



Table 1 Stress-intensity factor weights for a crack in an infinite plate subjected to

arbitrarynormal (p_,)and tangentialpressure (p_) distributionsof the form (x/a) '_

n (k,0)n

0 1

1 ±1/2

2 1/2

3 A-3/8

4 3/s
5 ±5/16

6 5/16

7 A-35/128

8 35/128

The postive and negative signs in this table refer to the crack tips

at x = +a, respectively. The negative values are meaningful only

in the presence of additional forces which prevent crack closure.

=

i

±

=

+ dr = dr (lO)

where ul_ , P[k are components of displacements and tractions obtained from

the fundamental solution of a unit point load in an infinite domain. Specifically,

uzk(%,_/) is the displacement along the zl- direction at point zj, due to a unit

point load along the z k- axis at point _j in an infinite domain of elastic linear

isotropic material. Similarly, pzk(zj,_j) is the traction along the zl- axis on a

line oriented at point zj due to a unit point load along the zk- axis at point _j in

an infinite domain. The quantity uk(_j) are the displacements at point _j and so

on. Equation (10) is the well-known Somigliana's identity and it gives the values

of the displacements at any internal point in terms of the boundary values u k,Pk

[14].

In the BEM the boundary (or boundaries) of the domain is discretized into

Arc number of boundary elements. The displacements u k and tractions pk within

each of these elements are assumed to vary in a constant or linear or quadratic

manner. The discretized form of Eq. (10) is written as

=-

z

6



/v, N,

i=1 " i=1 "

(11)

A boundary integral expression can be obtained by taking Eq. (11) to the bound-

ary. This equation when applied to different points on the boundary produces a

system of equations that are of the form

[[I]{U} = [¢]{T} (12)

where {U} and {T} are the displacements and tractions, respectively, at all the

nodes on the boundary F. For a mixed boundary value problem, the displace-

ments {Up} are prescribed on some parts of the boundary and tractions {Tp} are

prescribed on the remaining parts of the boundary. Note that at any point on

the boundary either displacements or tractions are known. Equation (12) can be

rearranged to group all the unknowns on the left hand side (LHS) and all the

known quantities on the right hand side (RIiS). This rearrangement leads to

[H]{X}=[G]{F} (13)

where {X} is the column vector of all the unknown displacements and tractions

and {F} contains the values of the known displacements and prescribed tractions.

Note that unlike finite-element method, the matrix [H] in Eq. (13) is unsymmetric

and is fully populated. The unknown displacements and tractions can be obtained

solving Eq. (13) as

{X}=[HI-'[GI{F} (14)

Once the nodal displacements and tractions are known, the displacements, {u},

and stresses, {a}, at any internal point can be calculated using the Somigliana's

identity as,



N, N,

j=_ j=a

= Z [s,]j{T,b - Z [s,b{v,b
j=l i=1

(15)

where N¢ is the number of boundary elements and {T,) and {U_} are nodal trac-

tions and displacements of the jth element. The matrices [D1], [D2I, [Sal and [$2] in

Eqs. (15) are obtained from integrating the integrals involved in displacement and

stress calculations [14]. However, when the internal point approaches the bound-

ary the integrals involved in the stresses and displacements at the internal point

become hyper-singular [14] and hence give rise to numerical errors. A procedure

that circumvents this difficulty when the internal point approaches the boundary

and obtains accurate stresses and displacements is presented later in this paper.

4 Boundary element alternating method

The procedure used in BEAM is very similar to that used in the finite-element

alternating method in references [6-12] The procedure is illustrated in Fig. 2, and

is explained below.

Step_!: Analyze the same configuration and loading as the given problem, but

without the crack using the boundary element method. The boundary element

solution gives the displacements and tractions of all the nodes on the boundaries

of the uncracked body. (Note that the line y = 0 corresponds to the line on which

the crack is present in the original problem.)

m

=

=
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(a) Original Crack
Configuration

Uncracked plate
-solution I

R It

p,p,

O'nt

A¢.. B

Infinite plate with a crack
-solution 2

(b) Subproblem$ in the alternating Method

Figure 2. Procedure used in the alternating method

Step___22: Obtain the stresses, ay and _r=y, on the line y = 0 for -a < z < a

using Eq. 13. These stresses determine the normal and tangential tractions p_ and

p_, respectively on this line y = 0.

Step 3: If both the normal and tangential tractions are negligibly small (i.e.

smaller than a prescribed tolerance level) stop the algorithm and calculate the

sum of the stress-intensity factors computed so far. If either normal or tangential

or both tractions are not negligible go to Step 4.

Step__44: For the crack faces to be traction free, the crack face normal tractions

(p_) and tangential tractions (pc), computed in Step 3 must be removed. (In

Fig. 2, for clarity, the tangential tractions on the crack faces are not shown.)

Therefore, the negative of crack-face normal tractions (i.e. p_ = -p_) and crack

face tangential tractions (i.e. p= = -p_) are applied to the analytical solution.

R and RThe tractions py Pc are now expressed in polynomial form as

N

R
P_' = E A'_(z/a)'_= {P}T'[A}

n=O

N

P_ = E B,(z/a)"= (P)T{B}
n=O

(16)



where

{p}T=.{1, (x/.), ......

The coefficients {A} and {B} in Eq. (16) are calculated using a least square

procedure [6] by

{A} = [El -1 [D] (17)

{B}=[E]-I[C]

where

f[El = {P}{p}Tdz (18)

f[D] = {P}p_(x)dz (19)
a

/_[C] = .[P}pf(z)dz (20)

The integrals in Eqs. (18)-(20) can be computed easily by using numerical inte-

gration, such as Caussian quadrature, because the discrete numerical values of

p_(x) and p_(z) can be calculated at Gaussian points from the boundary element
solution.

Step 5: Once the coefficients {A} and {B} are determined from Eq. (17),

equations (9) are used to calculate the stress-intensity factors for the current j th

iteration as

N

Kj = E (k_),.A_

,_=o (21)
N

n=O

where (k_,),_ are the stress-intensity factor weights given in Table I for each of the

polynomial functions.

10
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R and tangential p_ tractions obtained inSte____66: The crack-face normal pu

Step 4 create tractions on all the boundaries of the region of interest. The stresses

at any point z = z + iy, on the boundary can be obtained using Eqs. (2)-(8) for

each of the polynomial functions as

•[o'} = [M]{A} + [L]{B} (22)

where

(23)

In Eq. (22), [M] and [L] are the stresses at any point z on the boundary due to

unit values of each of the polynomial normal and tangential pressure distributions,

respectively. Note that the matrices [M] and [L] are available from Eqs. (6) and

(7).

The tractions, T_ and Tu, in the z- and y- directions, respectively, can be

calculated using the stresses on the boundary as,

{T} = [q]{a} (24)

where

{T}T= {T, Tu},

[o"
(25)

In Eq. (25), n, and n u are the direction cosines of the normal to the boundary

with respect to z- and y- axes, respectively.

Step 7: To satisfy the traction-free boundary conditions on the external

boundaries, the tractions created on the these boundaries due to the residual

pressures on the crack face in Step 6 need to be removed. Therefore, the negative

of these tractions calculated at the nodes in Step 6 are applied to the boundary

element model of the uncracked plate. The tractions calculated in Eq. (22) at each

node of the model are assembled to form a global vector as

11



{T} = -[U_]{A} -[0,]{B} (26)

where [GT,_] and [Gt] are the assembled matrices obtained using Eqs. (22),(24) and

(25) for each node in the model.

The nodal tractions in Eq. (26) along with the original displacement boundary

conditions are prescribed as tractions and displacements to the uncracked body.

This is the start of the next iteration. This iterative procedure is continued until

the crack face tractions in Step 3 are negligibly small. In the converged solution,

the mode I and mode II stress-intensity factors are simply the sum of the stress-

intensity factors from all the iterations. The convergence criteria were formulated

in terms of the integral of the residual pressures on the crack faces and are de-

scribed in reference 10. Here, similar convergence criteria are used for both normal

and tangential tractions simultaneously.

5 Some Computational Aspects

In the boundary element part of the method parabolic straight elements with

3-nodes were used to model the uncracked boundaries of the body. Several com-

putational aspects of the alternating method which are generic to any numerical

method used to analyze the uncracked body are presented in [6,7,10,12]. Other

computational aspects pertinent to the BEAM are summarized below.

5.1 Residual Pressure Calculation

The residual pressures fit over the crack center line (where the crack is present

in the original problem) and each iteration requires evaluation of the integrals in

Eqs. (18)-(20). To evaluate these integrals the values of stresses at quadrature

points are required. These stresses at quadrature points are calculated by using

Eq. (15) and assembling contributions from all the boundary elements in the struc-

ture. This needs to be performed for each iteration since, the displacements and

tractions used in Eq. (15) differ from iteration to iteration. However, considerable

computational efficiency can be achieved by a technique described below.

For any given crack length a , the coordinates of the quadrature points used

in Eqs. (18)-(20) do not vary from iteration to iteration. Hence, before starting

the iterative process the matrices [$1] and [$2] in Eq. (15) for each of the bound-

ary elements are calculated at the quadrature points. These matrices are then

12



assembled to form the global matrices [S;g] and [Sjg] for each of the quadrature

points. Then the stresses at a quadrature point can be evaluated from,

{_} = [S1g*]{U}k -[Szg*]{T}k (27)

where {U}k and {T}k are the global nodal displacement and traction vectors for

the k t_ iteration. The stresses at all the quadrature points for each iteration are

obtained by simple multiplication involved in Eq. (27). This procedure, however,

requires storage of the matrices [$79 ] and [S_g] at each of the quadrature points.

5.2 Calculation Of Nodal Tractions And Displacements

The unknown nodal tractions and displacements for any k th iteration are obtained

by combining Eqs. (13) and (26) as

where

{X}k = [Q]{A}k + [R]{B}k

[Q] = -[H] -_ [G][G.]

[R] = -[H] -_ [G][Gt]

(28)

(29)

and [G,_] and [G,] are formed from the matrices [d?,_] and [dr] of Eq. (26) and the

prescribed displacement boundary conditions.

As seen from Eq. (28), the unknowns {X}k, for the k th iteration depend only on

the polynomial coefficients {A}k and {B}k and the matrices [Q] and [R]. The

matrices [H], [G], [Gn], [Gt] and hence [Q] and [R] do not vary in the iterative

process. Therefore, the assembled LHS matrix [HI needs to inverted only once

and the matrices [Q] and [/it] need to be computed only once using Eq. (29).

This can be performed conveniently before the start of the iterative process. For

each iteration, after the residual pressure fit is made to evaluate {A} k and {B}k,

the unknowns {X}k are immediately available from Eq. (28) by simple matrix

multiplications.

13



"Finite Element" F1

y n x

ns ml m2

b 1

Element 0+1) .._ b. o _ _ I 0 _-aussian Points

Boundary _

Figure 3. "Finite elements" near the edge for accurate stresses

5.3 Stresses and Displacements Near Boundary Points

For edge crack problems, the residual polynomial pressures over the crack line

requires estimation of stresses from the BEM portion of the analysis at points very

near the boundary where the crack emanates. As mentioned earlier, as the internal

point approaches the boundary, the integrals involved in Eq. (15) for displacements

and stresses at internal points become hyper-singular [14] and because of this

singularity the stresses and displacements calculated very near the boundary, in

general, are inaccurate. This can be overcome by integrating the integrals in

Eq. (15) in closed form. However, this is not feasible for higher order boundary

elements. Therefore, when the internal points are very close to the boundaries

special procedures need to adopted to obtain accurate stresses. One such procedure

is described below.

The displacements calculated near the boundary points are more accurate

than the stresses calculated at the same point. This is because, the singularity in

Eq. (15) for displacement calculations near the boundary is one order less than the

singularity in stress calculation. This fact is utilized in an extrpolation procedure.

In this procedure two "finite elements" are constructed as shown in Fig. 3, near the

14
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point b3 on the edge from which the crack emanates. In Fig. 3, the crack is along

the line bsz. The nodes bl,b2,bs,b4,bs are the nodes in the boundary element

model and j and (j + 1) are the elements near the "crack line" of the uncracked

body. The two "finite elements" (F1 and F2 in Fig. 3) are constructed such that

they (a) are like 8-node parabolic finite elements, (b) are physically located on

either side of the crack line and share a common side (bsn2n_)- the crack line, (c)

share nodes that belong to the boundary element idealization of the uncracked

body (ha, b2, bs for the element F1 and bs, b4, bs for element F2) and (d) penetrate

a distance A into the uncracked body.

The displacement at the nodes ni, n2,..., ns in the two "finite elements" can

be computed by using Somigliana's identity. The displacements at the bound-

ary bl, b2,..., b5 are known from the boundary element solution of the uncracked

body. Thus the displacements at all the 8-nodes of each of the finite elements Fi

and F2 are known. Following well known isoparametric finite element procedures

the stresses at the 2 x 2 Gaussian points are calculated in each of the finite ele-

ments. The 2 x 2 Gaussian stresses are then extrapolated to the crack center line

[10,15,16]. In general, the crack line stresses thus obtained from the top element

F1 are not identical to those obtained from the bottom element F2. Therefore, the

extrapolated stresses from F1 and F2 are averaged and are used in the residual fit.

For points on the crack line whose distances from the edge are greater than

A (like points rnl,rrt2,...rn4 in Fig. 3), the stresses can be calculted using the

Somigliana's identity , since the boundary element stresses are accurate at these

points.

In this procedure, the critical parameter is distance A, the length of the

"finite elements". Numerical experimentation suggests that the length A should

be equal to or up to 1.5 times the length of the smallest element near the edge

in the boundary element model of the untracked body. This procedure appears

to demand extra computations. However, the extra computing is well worth the

effort because the stresses computed by this procedure are much more accurate

than those obtained by conventional boundary element procedures.

5._ Gonsistent Tractions due to Residual Pressure Distribution

In step 6 of the BEAM, the tractions on all the boundaries due to the residual

pressure distributions pc and py on the crack faces are determined. If the variation

of the tractions over an element is higher than a quadratic, then directly using

15



the nodal values of the tractions computed from Eq. (24) in the boundary element

equations will be inconsistent. This is because the traction computed at any point,

I' on the boundary element j (see figure 4) using Eq. (24), T(s) is not the same

as the traction computed TI at the same point by using

/'I = _1T1 + 'I'2T2 + _3T3 (30)

where T1, T2, T3 are the nodal tractions calculated by Eq. (24) and q'z, q_2, _3 are

the quadratic shape functions of element j. The error E(s), at any point s on the

jth boundary element is

!

J

2

=

E(s) = TI- T(s)

= .[,_}T.[T}j - T(s)
(31)

where{q'}T={q'z cI,2 *I'3 }Y and {T} T={T1 T2 T3}T

The tractions {T}j that minimize the error E(s) can be calculated by using

a least square procedure as

Element (j+l)

Y Element j -t ds _--'_'[I

i

z

m

Figure 4. Tractions on element j on the boundary due to

crack face pressure loading

16
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¢9 E2(s)ds} (32)O{T}T {_0" =0

or

where lj is the length of the mj th element. The Eq. (33) can be concisely written

as

=

The integrals involved in Eq. (34) can be carried out numerically because discrete

values of T(s) on the elements are available. The matrix [W] -1 can be written

down explicitly for a 3-node quadratic boundary element as

i -3/2 3
[W]_ I = 1_ _ /2 9/4 -3/2

tj -3/2 9

(35)

5.5 Edge Cracks

The analytical solution used in BEAM is for an embedded crack in an infinite

plate having two crack tips. But in edge cracks problems, only one crack tip

exists. Hence to use BEAM for edge crack problems, a fictitious crack tip needs

to be defined. The fictitious crack tip is usually assumed to be at z = -a. While

for 0 < x < a, the residual pressures are computed from the boundary element

solution, the residual pressures on the fictitious part of the crack -a < z < 0 need

to be defined. In this paper, a simple constant pressure distribution was used over

the fictitious part as discussed in reference 12.

17
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a

(a) Without shift

a

X, X'

(b)with shlH

Figure 5. Orgln shifting to account for the position of the flctious crack tip
for edge cracks from Internal boundaries

If the crack length is large, the fictitious crack tip can penetrate the bound-

ary opposite the point of origination of the actual crack. One such example of

a long edge crack from a circular hole is illustrated in Fig. 5(a). There are two

difficulties associated with long edge cracks and penetration of the fictitious part

of the crack. First, pressure fitting needs to be carried out on the part of the

fictitious crack that is in the penetrated region. This requires complicated bound-

ary element idealization and the construction of "finite elements" at two places

on the boundary. The second difficulty pertains to the use of the same boundary

element model for all crack lengths. Although only the uncracked body is mod-

eled, the boundary element idealization is usually made finer in the region of the

crack and coarse elsewhere. For example, region AB in Fig. 5(a) is usually a fine

mesh region and BCA is a coarse mesh region. When the cracks are short the

fictitious crack tip,the one at (-a, 0), is closer to the fine mesh region, boundary

18
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AB in Fig. 5(a). In contrast, when the crack is long, the fictitious crack tip is near

the region where the mesh is coarse, like boundary BG'. Because of the square

root singularity at the crack tips, for larger crack lengths the fictitious crack tip

creates large tractions on the elements in the coarse mesh region. The iterative

process may not be able to erase these tractions created in the elements of the

coarse region. In such situations, the iterative process either oscillates or diverges.

The current algorithm can be modified to make it more robust and allow the same

boundary element model to be used for all crack lengths. The modification is to

shift the origin such that the fictitious crack tip is positioned in such a way that

its influence is felt most in the region of the fine mesh. Figure 5(b) shows such

an origin shift by an amount a0 so that the fictitious crack tip is close to the fine

mesh region. This method is termed herein, the origin-shifting method. Details

of the origin shifting method can also be found in reference [12].

These modifications to the BEAM facilitate the analysis of several crack

lengths in a single computer run and require only one inversion of the system

matrix in Eq. (14). Furthermore, two different coordinate systems are conveneint

for the uncracked body analysis and the analytical solution. A global coordinate

system is usually convenient for the uncracked body analysis, while a local (crack)

coordinate system is convenient for the analytical part of the method. Appendix-

A present the transformations that are necessary to be able use two different

coordinate systems.

6 Results and discussion

To evaluate the effectiveness of the BEAM in mixed-mode problems, the method is

applied to several cracked configurations and loadings for which accurate solutions

are available in the literature. Both embedded and edge cracks in plates with and

without stress concentrations (due to notches and holes) were analyzed. The

normalized stress intensity factors are compared with those from the literature [4]

for each of these problems analyzed. The percent difference in the tables presented

in this paper is defined as

percent difference = [BEAM value-Reference value[
Reference value

In all the problems analyzed, a plane strain state was assumed with a Poisson's

ratio of 0.3.

19



Experience with FEAM [12] showed that the degree of polynomial of value

N = 5 yields accurate stress-intensity factors. Hence N = 5 was used for all the

problems presented in this paper. Several crack lengths were analyzed with a single

boundary element model for the uncracked body in a single computer run. Allthe

boundary element idealizations were performed using straight 3-noded quadratic

elements. When the prescribed tractions at a boundary point are discontinuous

(such as a corner), double nodes were used near that point.

c

--2W

S

(a) Remote uniform tension
loading

(b) Remote parabolic loading

Figure 6: Embedded slant crack problems analyzed
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6.1 Embedded Slant Crack Plate

Remote Uniform Tensile Loading - An embedded slant crack specimen with re-

mote uniform tensile stress is shown in Fig. 6(a). The plate was modeled with 10

quadratic boundary elements and had 24 nodes. The sides X = -t-IV were modeled

with four equal length elements and the sides Y = 4-H were modeled with one

element. Two crack inclination angles (/9 = 45* and 75*) were considered. The

boundary element models used are shown in Fig. 7. All the external boundaries,

AB, BC, CD and DA, in Fig. 7 were made stress free in the iterative part of the

algorithm. Eight crack lengths with (a/W) ratios varying from 0.1 to 0.8 were

analyzed in a single computer run. Stress-intensity factors were calculated for all

crack lengths at both crack tips (z = +a). The stress-intensity factors at both

the crack tips, as expected, were computed to be identical (to machine accuracy).

Tables 2 and 3 present the normalized stress-intensity factors obtained for # = 45 *

and 75* respectively. Reference results from the literature are included in these ta-

bles for comparison. Excellent agreement is obtained for all crack lengths between

the two sets of results even with a very coarse boundary element idealization. The

maximum difference is about two percent for both crack inclination angles. Three

to five iterations were needed to achieve converged solutions.

D

y,_ , _X

!

1
1

Figure 7. Boundary element model for slant embedded crack problems
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Table 2 Comparison of normalized stress-intensity factors, F/and FII, for embed-

ded slant cracks in a rectangular plate subjected to remote uniform tensile stress.

(Fig. 6(a),(H/W) = 2.0, 0 = 45 °)

FI = KI/ [ S_ l Fn = K,,/ I Sv/_ ]

(a/W) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

0.1 0.505 0.505 0.0 0.502 0.502 0.0

0.2 0.518 0.518 0.0 0.507 0.507 0.0

0.3 0.540 0.541 0.05 0.515 0.516 0.39

0.4 0.571 0.572 0.18 0.527 0.529 0.57

0.5 0.609 0.613 0.16 0.543 0.546 0.73

0.6 0.658 0.661 0.45 0.563 0.567 0.71

0.7 0.717 0.721 0.14 0.589 0.595 1.00

0.8 0.785 0.795 0.25 0.623 0.630 1.1

Z

|
,_ FI = KI/ [ S_/_'_ ]. FH = KIll Sv'_'_ ]

2

(a/W) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

z

0.1 0.068 0.068 0.0 0.252 0.252 0.0

__ 0.2 0.070 0.070 0.0 0.256 0.256 0.0

0.3 0.074 0.074 0.0 0.263 0.263 0.0

0.4 0.078 0.078 0.0 0.272 0.272 0.0
0.5 0.083 0.084 1.2 0.282 0.283 0.35

0.6 0.089 0.090 1.1 0.293 0.294 0.34

0.7 0.094 0.096 2.1 0.305 0.306 0.33

0.8 0.101 0.102 0.98 0.317 0.319 0.32

Table 3 Comparison of normafized stress-intensity factors, FI and FtI, for embed-

ded slant cracks in a rectangular plate subjected to remote uniform tensile stress.

(Fig. 6(a), (H/W) = 2.0, _ = 75 °)

w

m

r
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Table g Comparison of normalized stress-intensity factors, Fz and Fr_r, for an em-

bedded slant crack in a rectangular plate subjected to remote parabolic tensile

stress. (Fig. 6(b), (H/W) = 2.0, 0 = 45 °)

El = Krl [ SgTa ] F,, = KH/ [ ]

(a/W) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

0.25 0.345 0.344 0.29 0.361 0.363

0.20 0.338 - - 0.359

0.30 0.353 - 0.365

0.40 0.375 - 0.373

0.50 0.403 - 0.384

0.60 0.438 - 0.398

0.70 0.479 0.415

0.80 0.528 0.436 -

0.55

Remote Parabolic Tensile Loading- Instead of remote uniform tensile loading, a

parabolic tensile loading was applied to the slant crack specimens with a crack

inclination angle of 45 ° as shown in Fig. 6(b). The applied stresses S(_) at a point

on the top and bottom boundaries of the plate were calculated using the equation

2

= s[1.o- ]

where -W < { > W. The boundary element model used for this problem was

same as the previous problem (see Fig. 7). The mode I and mode II stress-

intensity factors are presented in Table 4 along with the reference value. Reference

results are available only for a crack length of (a/W) = 0.25 and again excellent

agreement with the reference value was obtained with a very coarse boundary ele-

ment idealization. A converged solution was obtained with three to five iterations.

These examples demonstrate that the BEAM gives accurate mixed-mode

stress-intensity factors for problems of embedded cracks in plates with rectilin-

ear boundaries. The method also effectively handled various loading conditions.
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In the next section the BEAM is applied to problems involving edge cracks in

mixed-mode situations.

tsl
T

' _ .... ln[-

(a) Slant edge crack-
Remote tension

loading

_,-s

(b) Slant edge crack-
Remote bending
loading

2H _--

it w-
(c) Slant edge crack from a

circular hole

Figure 8. Slant edge crack problems analysed

6.2 Slant Edge Cracks in Plates

Remote Uniform Tensile Loading - A slant edge cracked plate with remote uni-

form uniaxial loading is shown in Fig. 8(a). A crack inclination angle of 45 °

was used. The boundary element model with 56 nodes and 26 elements used in

the analysis is shown in Fig. 9. Two finite elements were constructed near the

point from which the crack is emanating as shown in Fig. 9. The distance A as

discussed earlier was selected to be about 1.5 times the length of the smallest

boundary-element near the edge. Crack lengths varying from (a/W) = 0.3 to

0.6 were considered. The stress-intensity factors obtained using this model are

presented in Table 5 along with the reference solutions. The maximum difference

between the results from this analysis and the reference solution is about 3 percent.

About 10 to 12 iterations were needed to obtain converged solutions.

Even though the shift of the origin is not necessary for the edge cracks ema-

nating from external boundaries, the origin-shifting method is used in the above

analysis, since numerical experimentation showed that the origin shift gave better
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results than the one without origin shifting. This may be due to the effect of

the fictitious crack tip is minimized in the origin shifting method. In the above

analysis the fictitious crack tip was positioned at a distance (z/W) = -0.3 from

the free edge.

_b • , 1
T z

X

c ,f

Figure 9. Boundary element model for edge crack problems

Remote Bending Loading - A slant edge cracked plate with remote bending is

shown in Fig. 8(b). The boundary element model is shown in Fig. 9. The bend-

ing moment was simulated by the corresponding bending stress applied over the

edges as shown in Fig. 8(b). Crack lengths ranging from (a/W) = 0.3 to 0.6

were considered. The results are presented in Table 6 with reference results from

the litreature. Here again excellent agreement was obtained with the reference

solutions.
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Table 5 Comparison of normalized stress-intensity factors, F1 and FH, for slant

edge cracks in a rectangular plate subjected to remote uniform tensile stress with

origin shift. (Fig. 8(a), (H1/W) = 1.0, (tt2/W) = 1.5, 0 = 45 °)

F, = K,/ [ ] F. = Kn/ [ S4";X ]

(a/W) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

!
!

0.10 0.728 - - 0.400 -

0.20 0.792 - - 0.425 - -

0.30 0.889 0.879 1.1 0.465 0.450 3.3

0.35 0.943 0.940 0.32 0.490 0.473 3.6

0.40 1.009 1.011 0.20 0.518 0.505 2.6

0.45 1.080 1.094 1.3 0.551 0.536 2.8

0.50 1.184 1.190 0.50 0.590 0.574 2.8

0.55 1.311 1.301 0.77 0.636 0.616 3.3

0.60 1.434 1.437 1.2 0.699 0.674 3.7

Table 6 Comparison of normalized stress-intensity factors, FI and F.rz, for slant

edge cracks in a rectangular plate subjected to remote bending stress. (Fig. 8(b),

(H1/W) = 1.0, (g2/w) = 1.5, 0 = 45 ° )

FI = KI/ [ Sv/_ ] FIz = KII/[ Sv/-_ ]

(a/W) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

0.10 0.674 - 0.360 - -

0.20 0.673 0.345 - -

0.30 0.690 0.685 0.73 0.334 0.315 6.0

0.35 0.705 0.705 0.0 0.332 0.319 4.1

0.40 0.728 0.736 1.1 0.330 0.320 3.1

0.45 0.756 0.758 0.26 0.331 0.324 2.2

0.50 0.789 0.795 0.76 0.340 0.329 3.3

0.55 0.827 0.832 0.6 0.341 0.337 1.2

0.60 0.872 0.889 1.9 0.352 0.344 2.3
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6.3 Slant Edge Crack Emanating From A Hole In A Rectangular Plate

An edge crack emanating from a hole with radius R in an infinite rectangular

plate and loaded with remote uniform tension is shown in Fig. 8(c). The crack

inclination angle 0 was selected as 30 °. Since the reference solution available for

this problem is of an infinite plate, a plate with dimensions (H/W) = 1.0 and

(W/R) = 24 was considered. The outer boundaries of the plate were modeled

with 12 elements as shown in Fig. 10 (a). The hole boundary was modeled with

78 boundary elements as shown in Fig. 10(b). ( Note that the middle node of the

boundary elements are not shown in Fig. 10(b).) Here again two finite elements

were constructed near the crack mouth as shown in Fig. 10(c). As described in

[12], for all crack lengths with (a/R) > 0.25, the fictitious crack tip was positioned

at (z/R) = -0.25. The crack lengths ranged from (c/R) = 0.1 to 1.0. (Note that

c is the projected length of the crack along the horizontal, see Fig. 8(c).). The

stress-intensity factors obtained with this method are presented in Table 7 along

with the reference solution. Excellent agreement was obtained with the reference

solutions. Only 10 to 14 iterations were needed to obtain converged solutions.

_=

=

2H=24R

_- _, _-

2W=24R

;

I (c) "Finite etement s"

rmar the edge

(a) Model for the plate Co) Model for the circular hole

Figure 10. Boundary element mode! for an edge crack from a circular hole problem
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Table ? Comparison of normalized stress-intensity factors, F1 and FII, for slant

edge cracks emanating from a circular hole in a rectangular plate subjected to

remote uniform tensile stress. (Fig. 8(c), (/-//W) = 1:0, 0 = 30 °)

F1 = KI/ [ Sv/ ] FII = KII/ [ Sv'r'_'-c ]

(c/R) BEAM Reference Percent BEAM Reference Percent
value value difference value value difference

0.10 2.501 2.501 0.0 0.750 0.701 7.0

0.15 2.328 (2.300)* 1.2 0.677 (0.660) 2.6
0.20 2.165 2.140 1.2 0.617 0.610 1.2

0.30 1.866 (1.880) 0.75 0.548 (0.550) 0.36

0.40 1.645 (1.680) 2.1 0.519 (0.520) 0.19

0.50 1.501 1.519 1.2 0.506 0.511 0.98

0.75 1.226 (1.240) 1.1 0.490 (0.500) 2.0
1.00 1.060 1.090 2.8 0.491 0.508 3.3

* Values in parantheses are interpolated values from tables in reference 4 (pages

259 and 261).

7 Concluding remarks

A boundary element alternating method (BEAM) for two-dimensional,

mixed-mode fracture problems is presented. The analytical solution for arbitrary

normal and tangential pressure distributions on the faces of the crack in an infinite

plate is used as the fundamental solution. In the numerical part, the boundary

element method is used to model and analyze the uncracked body. Details of

the implementation of the algorithm, together with a variety of computational

aspects of the method, were presented. An origin-shifting method is presented

that is particularly useful in the analysis of edge cracks emanating from the in-

ternal boundaries. This method of origin-shifting was also found to give better

results even for edge cracks emanating from internal boundaries. Also for edge

cracks problems, a procedure which utilizes "finite elements" and finite-element

type interpolations and stress evaluation was developed to calculate the stresses

accurately near a boundary. This procedure yielded stresses that are of better ac-

curacy than the stresses calculated by the traditional boundary element method.
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The BEAM was applied to severalmixed-mode problems to evaluate its ef-
fectiveness.Thesenumerical examplesshowedthat the BEAM requiresvery little
modeling effort and yields accurate mixed-mode stress-intensity factors. Three
to four iterations were necessaryto yield accurate and convergedstress-intensity
factors, while edgecrack configurations neededabout 10-15iterations. With this
method, severalcrack lengths canbe analyzedin a singlecomputer run and hence
it canbe usedto economicallyobtain stress-intensityfactors overa rangeof crack-
lengths.
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Appendix- A

Global-local Transformation_ in the BEAM

This appendix describes the coordinate and stress transformations that are

required when the global coordinate system does not coincide With the local (crack)

coordinate system.

The analytical part of the alternating method assumes that the crack is along

the y = 0 line (i.e. x- axis). While the crack coordinate, (x - y), system is

convenient for the analytical solution, it is cumbersome for the boundary element

part of the method. For example in Fig. A-1 the global, (X-Y), coordinate system

is obviously convenient for the BE part of the method and not the z - y crack

coordinates system. These two coordinate systems require stress and coordinate

transformations in the BEAM. These are discussed below.

/r-y%
X

Figure A-l, Global-local coordinate systems In BEAM

Before performing the Step 2 of the BEAM, the stresses, _'x,crr and o'xy ,

obtained from the uncracked body solution need to transformed to the local (crack)

coordinate system as,
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/
O'zy O'Xy

(A-l)

In Eq. (A-l), [)`] is the transformation matrix given by

[)`]=
cos 2 0 sin 2 0 sin 20

sin 2 0 cos _ 0 - sin 28

sin 0 cos 0 sin 0 cos 0 cos 20

(A-2)

where 8 is the crack inclination angle measured from the X-axis of the global

coordinate system as shown in Fig. A-1. The transformed stresses _r=,e v and _r=v

are then used to obtain the normal and tangential tractions on the crack faces.

Step 6 of the alternating method, on the other hand, requires an inverse trans-

formation. Recall that in Step 6 of the method the stresses on all the boundaries of

the body due to crack face pressures p,n and pvn are calculated. From these stresses
the tractions on the boundaries are calculated. First to calculate the stresses at a

point (Xb, Yb) on the boundary, the coordinates of this point in the local system

are calculated as

-s,r,.OYs [ sin 8 cos 0 Yb Y_
(A-3)

where X¢, Y¢ are the global coordinates of origin of the local coordinate system.

Then the complex variable at this point can be formed as, zb = xb + iyb. This

complex variable is then used in Eq. (22) to evaluate stresses in the local coordinate

system. These stresses are then transformed to the global system using

_y

O'Xy
{°=}= [),]-1

O'zy

(A -4)

These global stresses are then used in Eq. (24) in Step 6.

With the above definitions, however, Eq. (25) need to be redefined as,
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{T}T={Tx Ty}

[q]----- 0 ny nx

(A-5)

where nx and rty are the direction cosines of the normal to the boundary with

respect to X- and Y- axes, respectively.
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